Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Brain Behav Immun ; 109: 251-268, 2023 03.
Article in English | MEDLINE | ID: covidwho-2258334

ABSTRACT

COVID-19 and especially Long COVID are associated with severe CNS symptoms and may place persons at risk to develop long-term cognitive impairments. Here, we show that two non-infective models of SARS-CoV-2 can cross the blood-brain barrier (BBB) and induce neuroinflammation, a major mechanism underpinning CNS and cognitive impairments, even in the absence of productive infection. The viral models cross the BBB by the mechanism of adsorptive transcytosis with the sugar N-acetylglucosamine being key. The delta and omicron variants cross the BB B faster than the other variants of concern, with peripheral tissue uptake rates also differing for the variants. Neuroinflammation induced by icv injection of S1 protein was greatly enhanced in young and especially in aged SAMP8 mice, a model of Alzheimer's disease, whereas sex and obesity had little effect.


Subject(s)
Alzheimer Disease , COVID-19 , Humans , Mice , Animals , Blood-Brain Barrier/metabolism , Alzheimer Disease/metabolism , SARS-CoV-2 , COVID-19/complications , Neuroinflammatory Diseases , Post-Acute COVID-19 Syndrome
2.
EBioMedicine ; 76: 103818, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1634218

ABSTRACT

BACKGROUND: The emergence of new SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) that harbor mutations in the viral S protein raised concern about activity of current vaccines and therapeutic antibodies. Independent studies have shown that mutant variants are partially or completely resistant against some of the therapeutic antibodies authorized for emergency use. METHODS: We employed hybridoma technology, ELISA-based and cell-based S-ACE2 interaction assays combined with authentic virus neutralization assays to develop second-generation antibodies, which were specifically selected for their ability to neutralize the new variants of SARS-CoV-2. FINDINGS: AX290 and AX677, two monoclonal antibodies with non-overlapping epitopes, exhibit subnanomolar or nanomolar affinities to the receptor binding domain of the viral Spike protein carrying amino acid substitutions N501Y, N439K, E484K, K417N, and a combination N501Y/E484K/K417N found in the circulating virus variants. The antibodies showed excellent neutralization of an authentic SARS-CoV-2 virus representing strains circulating in Europe in spring 2020 and also the variants of concern B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). In addition, AX677 is able to bind Omicron Spike protein just like the wild type Spike. The combination of the two antibodies prevented the appearance of escape mutations of the authentic SARS-CoV-2 virus. Prophylactic administration of AX290 and AX677, either individually or in combination, effectively reduced viral burden and inflammation in the lungs, and prevented disease in a mouse model of SARS-CoV-2 infection. INTERPRETATION: The virus-neutralizing properties were fully reproduced in chimeric mouse-human versions of the antibodies, which may represent a promising tool for COVID-19 therapy. FUNDING: The study was funded by AXON Neuroscience SE and AXON COVIDAX a.s.


Subject(s)
Antibodies, Monoclonal/immunology , Antineoplastic Agents, Immunological/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/therapeutic use , Antigenic Drift and Shift , Antineoplastic Agents, Immunological/therapeutic use , COVID-19/virology , Disease Models, Animal , Humans , Kinetics , Lung/pathology , Mice , Mutation , Neutralization Tests , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
3.
Gen Physiol Biophys ; 40(6): 443-462, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1572769

ABSTRACT

The choroid plexus, located in the ventricular system of the central nervous system (CNS), obtains numerous roles critical for the proper development and operating of the CNS. The functions range from the best-known ones of the barrier and cerebrospinal fluid (CSF) producer, through participation in immune answer, 'nourishment, detoxification and reparation of the rest of the CNS. Increase number of studies point out the association between choroid plexus dysfunction, characterized by alterations in secretory, transport and barrier capabilities, and the broad spectrum of clinical conditions, as well as physiological aging. We present a brief overview of pathological states known or speculated to be connected to choroid plexus dysfunction, ranging from neurodevelopmental, to autoimmune and neurodegenerative diseases. We also cover the topic of choroid plexus tumors, as well explained involvement of the choroid plexus in pathogen invasion of the CNS, also referring to the currently actual SARS-CoV-2 infection. Finally, we have also touched conducted studies on the choroid plexus regenerative potential. With the information provided in the review we want to point out the importance and call for further research on the role of the choroid plexus in the sustainability of central nervous system health.


Subject(s)
Brain Diseases , COVID-19 , Blood-Brain Barrier , Choroid Plexus , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL